Biomimetic bidirectional switchable adhesive inspired by the gecko

The gecko adhesive system has attracted significant attention since the discovery that van der Waals interactions, which are always present between surfaces, are predominantly responsible for their adhesion. The unique anisotropic frictional–adhesive capabilities of the gecko adhesive system originate from complex hierarchical structures and just as importantly, the anisotropic articulation of the structures. Here, by cleverly engineering asymmetric polymeric microstructures, a reusable switchable gecko-like adhesive can be fabricated yielding steady high adhesion (inline image ≈ 1.25 N/cm2) and friction (inline image ≈ 2.8 N/cm2) forces when actuated for “gripping”, yet release easily with minimal adhesion (inline image ≈ 0.34 N/cm2) and friction (inline image≈ 0.38 N/cm2) forces during detachment or “releasing”, over multiple attachment/detachment cycles, with a relatively small normal preload of 0.16 N/cm2 to initiate the adhesion. These adhesives can also be used to reversibly suspend weights from vertical (e.g., walls), and horizontal (e.g., ceilings) surfaces by simultaneously and judiciously activating anisotropic friction and adhesion forces. This design opens the way for new gecko-like adhesive surfaces and articulation mechanisms that do not rely on intensive nanofabrication in order to recover the anisotropic tribological property of gecko adhesive pads, albeit with lower adhesive forces compared to geckos.

K. Jin, J. C. Cremaldi, J. S. Erickson, Y. Tian, J. N. Israelachvili, and N. S. Pesika
Adv. Funct. Mater.
Volume: 24
Number: 5
Pages: 574–579
Date: February, 2014
ICB Affiliated Authors: Jacob N Israelachvili