Low temperature fabrication and surface modification methods for fused silica micro- and nanochannels

Electrokinetic based micro- and nanofluidic technologies provide revolutionary opportunities to separate, identify and analyze biomolecular species. Key to fully harnessing the power of such systems is the development of a robust method for integrated electrodes as well as a thorough understanding of the influence of the electrokinetic surface properties with and without different surface modifications. In this work, we demonstrate a surface micromachined fabrication approach for integrated addressable metal electrodes within centimeter-long nanofluidic channels using a low-temperature, xenon diflouride dry-release method for novel biosensing applications, as well as recent results from a joint theoretical and experimental study of electrokinetic surface properties in nano- and microfluidic channels fabricated with fused silica. The main contribution of this fabrication process involves the addition of addressable electrodes to a novel dry-release channel fabrication method, produced at <300°C, to be used in nanofluidic electronic sensing of biomolecules. Finally, we also show a novel method with which to coat our channels with silane based chemistries. Certain modifications are observed to show improved resistance to non-specific adhesion of both small molecules and proteins, indicating their further use as compatible surfaces in micro- and nanofluidic applications.

S. Pennathur and P. Crisalli
MRS Proc.
Volume: 1659
Pages: 15–26
Date: January, 2014
ICB Affiliated Authors: Sumita Pennathur