Spectral mapping of brain functional connectivity from diffusion imagining

Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole- brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.

"Cassiano O. Becker, Sérgio Pequito, George J. Pappas, Michael B. Miller, Scott T. Grafton, Danielle S. Bassett and Victor M. Preciado"
Scientific Reports
Volume: 8
Number: 1411
Pages: 1-15
Date: January, 2018
ICB Affiliated Authors: Scott T Grafton, Michael B Miller