Convective flows in evaporating sessile droplets

Abstract

The evaporation rate and internal convective flows of a sessile droplet with a pinned contact line were formulated and investigated numerically. We developed and analyzed a unified numerical model that includes the effects of temperature, droplet volume, and contact angle on evaporation rate and internal flows. The temperature gradient on the air/liquid interface causes an internal flow due to Marangoni stress, which provides good convective mixing within the droplet, depending upon Marangoni number. As the droplet volume decreases, the thermal gradient becomes smaller and the Marangoni flow becomes negligible. Simultaneously, as the droplet height decreases, evaporation-induced flow creates a large jet-like flow radially toward the contact line. For a droplet containing suspended particles, this jet-like convective flow carries particles toward the contact line and deposits them on the surface, forming the so-called “coffee ring stain”. In addition, we reported a simple polynomial correlation for dimensionless evaporation time as a function of initial contact angle of the pinned sessile droplet which agrees well with the previous experimental and numerical results.

ICB Affiliated Authors

Authors
M. R. Barmi and C. D. Meinhart
Date
Type
Peer-Reviewed Article
Journal
J. Phys. Chem. B
Volume
118
Pages
2414–21