A load driver device for engineering modularity in biological networks

Abstract

The behavior of gene modules in complex synthetic circuits is often unpredictable. After joining modules to create a circuit, downstream elements (such as binding sites for a regulatory protein) apply a load to upstream modules that can negatively affect circuit function. Here we devised a genetic device named a load driver that mitigates the impact of load on circuit function, and we demonstrate its behavior in Saccharomyces cerevisiae. The load driver implements the design principle of timescale separation: inclusion of the load driver's fast phosphotransfer processes restores the capability of a slower transcriptional circuit to respond to time-varying input signals even in the presence of substantial load. Without the load driver, we observed circuit behavior that suffered from a 76% delay in response time and a 25% decrease in system bandwidth due to load. With the addition of a load driver, circuit performance was almost completely restored. Load drivers will serve as fundamental building blocks in the creation of complex, higher-level genetic circuits.

ICB Affiliated Authors

Authors
D. Mishra, P. M. Rivera, A. Lin, D. Del Vecchio, and R. Weiss
Date
Type
Peer-Reviewed Article
Journal
Nature Biotechnology
Volume
32
Pages
1268–1275