New-to-nature chemistry from old protein machinery: carbene and nitrene transferases

Abstract

Hemoprotein-catalyzed carbene and nitrene transformations have emerged as powerful tools for constructing complex molecules; they also nicely illustrate how new protein catalysts can emerge, evolve and diversify. These laboratory-invented enzymes exploit the ability of proteins to tame highly reactive carbene and nitrene species and direct their fates with high selectivity. New-to-nature carbene and nitrene transferases catalyze many useful reactions, including some that have no precedent using chemical methods. Here we cover recent advances in this field, including alkyne cyclopropenation, arene cyclopropanation, carbene CH insertion, intramolecular nitrene CH insertion, alkene aminohydroxylation, and primary amination. For such transformations, biocatalysts have exceeded the performance of reported small-molecule catalysts in terms of selectivity and catalyst turnovers. Finally, we offer our thoughts on using these new enzymatic reactions in chemical synthesis, integrating them into biological pathways and chemo-enzymatic cascades, and on their current limitations.

ICB Affiliated Authors

Authors
Zhen Liu and Frances H. Arnold
Date
Type
Peer-Reviewed Article
Journal
Current Opinion in Biotechnology
Volume
69
Number
June 2021
Pages
43-51